

Comodojo daemon docs

This library provides tools to create, control and interact with complex, multi-process PHP daemons.

Table of Contents:

	General concepts
	The big picture

	Daemon loop

	Socket communication

	POSIX signals and signal-to-event bridge

	Workers and Worker management

	Installation
	Requirements

	Using the library
	Defining the daemon

	Creating the exec script

	Running the daemon

	Interacting with the daemon

	Daemon configuration
	General configuration

	Advanced configuration

	Using Workers

General concepts

This library provides basic tools to create solid PHP daemons that can:

	spawn and control multiple workers,

	communicate via unix/inet sockets using structured RPC calls,

	receive and handle POSIX signals using a signal-to-event bridge, and

	maintain small memory footprint.

The following picture shows the high level architecture of the comodojo/daemon [https://github.com/comodojo/daemon] package.

[image: comodojo/daemon architecture]
comodojo/daemon v1.X architecture

The big picture

According to wikipedia [https://en.wikipedia.org/wiki/Daemon_(computing)]:

[…] a daemon is a computer program that runs as a background process, rather than being under the direct control of an interactive user.

Starting from the ground up, the structure of this library reflects the above definition: the \Comodojo\Daemon\Process abstract class provides all the basic methods to create a standard *nix process that can handle OS signals and set its own niceness.

The \Comodojo\Daemon\Daemon abstract class extends the previous one with all the fancy daemon features. When extended and instantiated, this class, basically:

	forks itself and close the parent process (to became an orphaned process)

	detaches from STDOUT, STDERR, STDIN and became a session leader

	creates and inject event listeners to react to common *nix signals (SIGTERM, SIGINT, SIGCHLD)

	creates a communication socket

	start the internal daemon loop

Creating a simple echo daemon this way took just a couple of lines:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	<?php namespace My\Echo\Daemon;

use \Comodojo\Daemon\Daemon as AbstractDaemon;
use \Comodojo\RpcServer\RpcMethod;

class Daemon extends AbstractDaemon {

 public function setup() {
 $echo = RpcMethod::create("my.echo", function($params, $daemon) {
 $message = $params->get('message');
 return $message;
 }, $daemon)
 ->setDescription("I'm here to reply your data")
 ->addParameter('string','message')
 ->setReturnType('string');

 $this->getSocket()
 ->getRpcServer()
 ->methods()
 ->add($echo);
 }

}

Daemon loop

The daemon itself is designed to handle communication via socket or at the OS level. That’s why the main loop in comodojo/daemon [https://github.com/comodojo/daemon] is implemented ad the socket level, i.e. the daemon loop endlessly waiting for incoming connections. Once received, the socket calls the internal RPC server to execute the command (if any). This behaviour can not be changed.

Note

See comodojo/rpcserver github repo [https://github.com/comodojo/rpcserver] for more information about RPC server.

Socket communication

TBW

POSIX signals and signal-to-event bridge

Once received, a POSIX signal is automatically converted into a \Comodojo\Daemon\Events\PosixEvent event that will fire hooked listeners. In this way the framework can be customized to react to specific events according to user needs.

Predefined listeners are in place to handle most common system events; the \Comodojo\Daemon\Listeners\StopDaemon, for example, is designed to react on SIGTERM and to close the daemon gracefully.

Workers and Worker management

Workers are the standard way to create extended logic inside a project based on comodojo/daemon [https://github.com/comodojo/daemon].

A worker is a child process, forked from the daemon, that implements another kind of loop; the daemon itself constantly monitors the status of the worker and keeps an always open bidirectional communication channel using shared memory segments (SHMOP) [http://php.net/manual/en/book.shmop.php].

In other words, a worker can actually do a “specialized work” independently from the parent process, without exposing another socket, relying on the daemon for external communications.

Installation

First install composer [https://getcomposer.org/doc/00-intro.md], then:

composer require comodojo/daemon

Requirements

To work properly, comodojo/daemon requires PHP >=5.6.0.

Following PHP extension are also required:

	ext-posix: PHP interface to *nix Process Control Extensions

	ext-pcntl: process Control support in PHP

	ext-shmop: read, write, create and delete Unix shared memory segments

	ext-sockets: low-level interface to the socket communication functions

Using the library

Creating a daemon with this library requires at least two steps:

	create your own daemon class, defining methods to be exposed via RPC socket,

	create the daemon exec file, that will init the above mentioned class providing basic configuration.

Workers can be also injected to the daemon in the second step.

Defining the daemon

Your new daemon should extend the \Comodojo\Daemon\Daemon abstract class, implementing the abstract setup method.

The main purpose of this method is to define all the commands that the daemon will accept from the input socket.

Let’s take as an example the dummy echo daemon mentioned in General concepts section:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	<?php namespace My\Echo\Daemon;

use \Comodojo\Daemon\Daemon as AbstractDaemon;
use \Comodojo\RpcServer\RpcMethod;

class Daemon extends AbstractDaemon {

 public function setup() {

 // define the echo method
 $echo = RpcMethod::create("my.echo", function($params, $daemon) {
 $message = $params->get('message');
 return $message;
 }, $daemon)
 ->setDescription("I'm here to reply your data")
 ->addParameter('string','message')
 ->setReturnType('string');

 // inject the method to the daemon internal RPC server
 $this->getSocket()
 ->getRpcServer()
 ->methods()
 ->add($echo);
 }

}

The my.echo RPC method expects a string parameter message that will be replied by the server.

Now that we have our first daemon, let’s figure out how to start it.

Creating the exec script

The exec script typically provides only the basic configuration to the daemon class.

Following an example exec script that init the daemon using an inet/tpc socket on port 10042.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	#!/usr/bin/env php
<?php

require "vendor/autoload.php";

use \My\Echo\Daemon;

$configuration = [
 'description' => 'Echo Daemon',
 'sockethandler' => 'tcp://127.0.0.1:10042'
];

$daemon = new Daemon($configuration);

$daemon->init();

Note

for a complete list of configuration parameters, refer to the Daemon configuration section.

Once saved and made executable, the daemon is ready start.

Running the daemon

If called with no arguments, the exec script will present the default daemon console:

[image: comodojo/daemon default console]
comodojo/daemon default console

The -d (run as a daemon) and the -f (run in foreground) arguments are the most important to understand. If -d is selected,
the script will act as a daemon (forking itself, detaching from IO, …), while the -f keeps the script in foreground and the standard shell IO.

So, it’s trivial to understand that the main purpose of the -f argument is to enable the debug at run-time.

Two typical combination of arguments are the following:

	run the daemon, (eventually) cleaning the socket and the locker: ./daemon -d -s

	run the daemon in foreground, enabling debug: ./daemon -f -v

Interacting with the daemon

TBW

Daemon configuration

General configuration

TBW

Advanced configuration

TBW

Using Workers

TBW

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comodojo_daemon-cmd-v1.X.png
[JOX) [| bin — -bash — 128x18

$./daemon
Echo Daemon
Usage: ./daemon [-d, --daemon] [-f, —--foreground] [-s, —--hardstart] [-h, --help] [-v, —-verbosel]

Optional Arguments:

-v, ——verbose
turn verbose mode on (only in foreground mode)
-d, ——daemon
run as a daemon
-f, ——foreground
run as a foreground process
—-s, ——hardstart
attempt to clean sock and lock files before startup
-h, —-help

show this help (default)

_static/comodojo_daemon-internal-architecture-nofill-v1.X.png
To

XMLLISON RPC.

Socket Server

RPC Server

il

&

POSIX Sgnaiing

POSIX IPC

daemon loop

Loop Manager
Events
PID Lock
Logging

SHMOP

Operating System

_static/file.png

_images/comodojo_daemon-cmd-v1.X.png
[JOX) [| bin — -bash — 128x18

$./daemon
Echo Daemon
Usage: ./daemon [-d, --daemon] [-f, —--foreground] [-s, —--hardstart] [-h, --help] [-v, —-verbosel]

Optional Arguments:

-v, ——verbose
turn verbose mode on (only in foreground mode)
-d, ——daemon
run as a daemon
-f, ——foreground
run as a foreground process
—-s, ——hardstart
attempt to clean sock and lock files before startup
-h, —-help

show this help (default)

_images/comodojo_daemon-internal-architecture-nofill-v1.X.png
To

XMLLISON RPC.

Socket Server

RPC Server

il

&

POSIX Sgnaiing

POSIX IPC

daemon loop

Loop Manager
Events
PID Lock
Logging

SHMOP

Operating System

_static/ajax-loader.gif

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Comodojo daemon docs

 		
 General concepts

 		
 The big picture

 		
 Daemon loop

 		
 Socket communication

 		
 POSIX signals and signal-to-event bridge

 		
 Workers and Worker management

 		
 Installation

 		
 Requirements

 		
 Using the library

 		
 Defining the daemon

 		
 Creating the exec script

 		
 Running the daemon

 		
 Interacting with the daemon

 		
 Daemon configuration

 		
 General configuration

 		
 Advanced configuration

 		
 Using Workers

_static/up-pressed.png

_static/up.png

_static/plus.png

